#include <bits/stdc++.h>
using namespace std;
// 最小生成树算法, 并查集 + kruskal
// 1. 并查集维护components的数量,成功union两个不连接的节点,components减1
// 2. 如何判断唯一性?如果当前存在大于等于2种相同权重边可以选择,这些边都能够将compents数量减1,那么如果是唯一的MST,它们都应该出现在最终的MST里,所以当遇到多种相同权重边被标记应该出现MST中,但是后续发现这类的其中某一条边的两个顶点已经被union了,所以这时候MST是不唯一的。
class UnionSet {
public:
int num;
vector<int> fa, rank;
UnionSet(int n) {
this->num = n;
this->rank.resize(n+1);
this->fa.resize(n+1);
for (int i = 0; i < n+1; i++) {
rank[i] = 0;
fa[i] = i;
}
}
int find(int p) {
return p == fa[p] ? p : (fa[p] = find(fa[p]));
}
void union_set(int p, int q) {
int i = find(p), j = find(q);
if (i == j) return;
this->num--;
if (rank[i] < rank[j]) { fa[i] = j; rank[j] += 1;}
else { fa[j] = i; rank[i] += 1; }
}
bool connected(int p, int q) {
return find(p) == find(q);
}
};
class Edge {
public:
int v1, v2, w;
bool status;
Edge(int v1, int v2, int w) {
this->v1 = v1;
this->v2 = v2;
this->w = w;
this->status = false;
}
bool operator<(const Edge &e) const {
return this->w < e.w;
}
};
int main() {
vector<Edge> edge_vec;
int n, m, v1, v2, w;
scanf("%d%d", &n, &m);
for (int i = 0; i < m; i++) {
scanf("%d%d%d", &v1, &v2, &w);
edge_vec.push_back(Edge(v1, v2, w));
}
sort(edge_vec.begin(), edge_vec.end());
auto u = UnionSet(n);
bool isUnique = true;
int sum = 0;
for (int i = 0; i < edge_vec.size(); i++) {
auto e = edge_vec[i];
if (u.connected(e.v1, e.v2)) {
if (e.status) isUnique = false;
continue;
} else {
int p = i;
while (p < edge_vec.size() && edge_vec[p].w == e.w && !u.connected(edge_vec[p].v1, edge_vec[p].v2))
edge_vec[p++].status = true;
u.union_set(e.v1, e.v2);
sum += e.w;
}
}
if (u.num != 1) printf("No MST\n%d\n", u.num);
else printf("%d\n%s\n", sum, isUnique ? "Yes" : "No");
return 0;
}